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Abstract. We discuss the role of the microscopic stochastic dynamics in the macroscopic 
properties of a simple spin-Eip non-equilibrium mean field model where ferromagnetic 
and antiferromagnetic interactions are competing. We have found that different analytical 
forms for the dynamic mechanism give rise to diffeerent stationary states at low temperature, 
in contrast to what happens at equilibrium. We also 6nd an effective free-energy functional 
which allows us to classify the stable and metastable stationary solutions. 

1. Introduction 

In the statistical physics context, this century has been characterized and dominated 
by a deep understanding of systems in equilibrium states. In particular, the connection 
between the microscopic and macroscopic properties of these systems by means of the 
Gibbs ensemble theory has been one of the essential tools responsible of this success. 
In contrast, the study of systems under the action of external agents driving them to 
non-equilibrium stationary states still lacks a well-defined theory equivalent in general- 
ity and in its practical applications to the equilibrium Gibbsian one. 

In this context, our general strategy is clear: by using simple models describing 
non-equilibrium situations we would like to understand general features of these 
systems to obtain new ideas in order to build such a hypothetical theory. 

A useful model in the development of equilibrium statistical mechanics has been 
the king model [I]. This has been so because the model is sufficiently simple to be 
treated with analytical tools, but is also complex enough to have a rich collective 
behaviour, such as, for example, a phase transition. Moreover, in the study of non- 
equilibrium stationary states, we think that it is interesting to build general models 
which include the equilibrium as a particular case for some values o f  their external 
parameters. Therefore, a generalization of the king model may be the most appropiate 
model to use as a well known reference system for comparison purposes. In this work 
we use two reference equilibrium systems: the mean field versions of the ferromagnetic 
and antiferromagnetic king model. In particular, the non-equilibrium model treated 
in this paper is built as the competition of two Markov processes, each one, when 
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acting apart, driving the system to a pure Gibbs ferromagnetic and antiferromagnetic 
Gibbsian state, respectively. Then, by varying the frequency of the two processes we 
can move smoothly away from the equilibrium behaviour. 

The paper is structured as follows. Section 2 is dedicated to defining the model 
system. In section 3 we describe the N-expansion of the model, the solutions of the 
deterministic and Fokker-Planck equations are derived and a theory to discriminate 
between stable and metastable states is introduced. In section 4 we remark on the main 
conclusions of this work. 
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2. The model 

In each node, x, of a finite &dimensional simple cubic lattice, A c  Zd,  we define a 
spin variable, s,, which can take + I  or -1  values. A system configuration s is given 
by a set of values s, in A, i.e. s = Is, ; x E A}, and it evolves in time according to a 
stochastic Markovian spin-flip dynamics. The system time evolution is characterized 
by the probability to find the system in a configuration s at a given time t, i.e. P ( s ;  l), 
which obeys a Markovian master equation 

a 
- P ( s ;  t ) =  [ w ( s ~ ; x ) P ( s = ; r ) - W ( S ; x ) P ( s ; f ) ]  (2.1) 
at XSA 

where sx is the s-configuration with the spin at x flipped, i.e. s, + -sx, and w ( s ;  x) is 
the transition probability per unit time that the spin a t  x flips [2]. Once the  rate w ( s ;  x) 
is specified, the model is totally defined. In particular, if we want to describe a system 
evolving from an arbitrary initial state towards a final equilibrium one, which is 
characterized by a Hamiltonian, H ( s ) ,  we may use 

w ( s ;  x ) =  + ( H ( s “ ) - H ( s ) )  +(A)  =e-’+(-A) (2.2) 

which guarantees that the stationary distribution is P,,(s) = lime..- P ( s ;  t )  = 
Z - ’  exp(-H(s)). We will assume the normalization + ( O )  = 1. 

As we said above, we are interested in the study of simple systems with non- 
equilibrium stationary states. As we explained in the introduction, a way to build this 
kind of system is by introducing the competititon of two dynamic mechanisms, each 
driving the system to a different final equilibrium state (for their physical relevance, 
see 13-51), that is, 

w ( s ;  X)=P+(HI(S=)-Hl(s))+(l - P ) + ( H , ( S = ) - H , ( s ) )  (2.3) 
where p E [0,1] gives the relative frequency between the two mechanisms. Obviously, 
whenp = l(0) the final stationary state is an equilibrium one with Hamiltonian Hl(2,(s). 
In this paper we consider for simplicity HI and Hz being the ferromagnetic and 
antiferromagnetic mean field Hamiltonians for the Ising model, i.e. 

H ~ ( ~ ) ( S ) = - ~ N K ~ F ( A ) ( S ) ’  (2.4) 

where K = J / k s T ,  T being the system temperature, 

are the ferromagnetic and antiferromagnetic order parameters, respectively, and 
are two disjoint sets of N points, N = lhl/2. One can imagine the lattice as composed 
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by two equal interpenetrating sublattices. When the initial condition for P ( s ;  t )  is such 
that all spins in each sublattice, hi, are equivalent, we can perform in the master 
equation (2.1) a partial sum over configurations with fixed magnetizations at each 
sublattice or, equivalently, with Exed mF and mA. That is, we can define 

Q(mF, mA; t )=c s(m,-mF(s))s(mA-mA(s))P(s; t ) .  (2.6) 

Taking a partial derivative with respect to time in equation (2.6) and using the master 
equation (2.1) and equations (2.3)-(2.5) we get 

2mAv+A--  . (2.8) N N ' 111 
In the limiting case p = l(0) the master equation (2.7) has, by construction, the following 
equilibrium stationary solution: 

For these cases and in the thermodynamic limit, N + a, the model exhibits a phase 
transition [ 11: = 0 when K < K,, being 
all the stationary properties independent of the functional form, q4, considered for the 
dynamics. Some dynamic properties, such as the decay time for metastable states and 
the tunnel effect, have been studied by computer simulation methods [61 and, as 
expected, they depend on the used rate. The goal of this paper is to study not the 
dynamic but the stationary behaviour of the system and the rate-type influence on its 
properties. 

E ( mF(A)) # 0 when K > Kc = and 

3. The master equation N-expansion 

The general solution of the master equation (2.7) is highly non-trivialTor an arbitrary 
N-value. It is natural in the statistical mechanics context to study the microscopic 
systems from a macroscopic point of view, i.e. when N + a. In this case, and assuming 
that the central limit theorem holds for the spin stochastic variables, it is natural to write 
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where v&t) are functions to be determined and 7 and are stochastic variables 
describing the Euctuations around uF, U,,, respectively. Introducing the expressions of 
equations (3.1) in equations (2.7) and (U), expanding these in powers of N (this is 
the well known Van Kampen N-expansion [7J) and identifying the leading orders, 
we get 

O ( m ) :  

2 2 OF? u A ) p  -= - 
dt * = + I  

(3.2) 
d UA c z CO(/.% v ;  UF, -=_ 
dt *=*I u=ii 

O ( N o ) :  

-n(v,5; a t ) = { b ~ ’ ( l ) , 5 . 2 ) - b ~ ’ ( n , 5 , 0 )  
at 

where II(7,,$; f) is the probability distribution at time t for the random variables q 
and 5; we have used 

(3.4) 
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3.1. Macroscopic stationary properties and fluctuations 

Let us study first the stationary solutions of the deterministic equations (3.2). Substitnt- 
ing equations (3.5) in equations (3.2) we get 

d t  -=2p+(4KV~) exp(2KuF)[sinh(2KtiF) -  ti^ cOsh(2KU~)l 

-2(1 -p)uFcosh(2KVA)+(4KuA) exp(2KtiA) (3.7) 

duA -=2(1 -p)+(4KuA) exp(2KuA)[sinh(2KuA) - uA cosh(2KuA)] d t  

- 2puA cosh(2KuF)+(4KtiF) exp(2KtiJ. (3.8) 
The stationary state, us,- (%,sf, uA,.,), is defined as the solution of the latter system of 
equations with duF,,,/dt = duA,Jdt =O. 

Some general properties for any rate can be easily worked out from equations (3.7) 
and (3.8) (i) for the infinite temperature limit, T+m, there is a unique solution 
ti,, = (0,O) which is dynamically stable under small perturbations when T > TL”(p) 3 
2 max{p, 1-p}, (ii) Tp’ is the critical temperature of a second-order phase transition 
with mean field critical exponents o,;=A(TL”- T)”’ where A-’= 
4p(24pJA,+(h)lA=o-1) and (iii) u F + u A = l  when T=O and uF,uA#O. 

The structure of ust below TF’(p) is not trivial and it depends strongly on the rate 
+ we use. We have studied in particular two rates: +l(h)=e-A’2 and +2(h)  = 
1 -tanh(h/2) and, because equations (3.7) and (3.8) are invariant under the exchange 
o f p o ( I - p ) a n d  u ,o t i , ,wehaves tudiedonly thecasep>~.  

Solving analytically and/or numerically equations (3.7) and (3.8) we show in figure 
1 the solution structure for the rates + I  and +2. We see in both cases that there exists 
a new phase transition with critical temperature T p ) <  T;’)  which is a function of the 
rate. In particular: Tp)(  p ;  4,) = 2[ 1 + (1 - p ) p - ’  cosh(x)]-’, where x is solution of the 
implicit equation px =(1 - p )  sinh(x), and T p ’ ( p ;  CZ) =2(1 - p ) .  The locally stable 
solutions when T c [ T : * ) ( p ;  T c ) ( p ) ]  are of the form u,,=+(uF,O). Below 
T p ’ ( p ;  +) the solution form depends also on the rate used. For the rate +, there is a 
coexistence of two locally stable solutions, U:, = (U;, 0) and U:: = (0, ti:), while for +* 
there is a single solution, us, = (uF, uA). 

In figures 2 and 3 the explicit behaviour of uF and tiA for both rates as a function 
of temperature for fixed p = 0.8, and as a function of p for different temperatures are 
shown, respectively. Some interesting properties are reflected in these figures. When 
the rate is + I ,  U:: appears in a discontinuous form which is typical for and characteristic 
of a first-order phase transition and, a priori more surprisingly, Iu:I and /U:/ tend to 
one when T +  0 for any p E [f, 1) .  That is, it may be possible to find a pure antiferromag- 
netic state for p = 1 (an almost pure ferromagnetic dynamic mechanism) at low enough 
temperatures. This solution has to be unphysical because one expects that, in these 
mean field system types, small perturbations around the equilibrium state will give 
equally small corrections for the physical obervables. The latter argument implies that 
U:: is not a real macroscopic stationary state but a metastable one. In contrast to the 
latter case, for the rate +2 there is a true second-order phase transition below T:”. 
The behaviour of vF and U, is regular and mutually independent because the evolution 
equations (3.7) and (3.8) are decoupled for this particular rate and they reach their 
maximum values, vF=p and uA= 1-p, at T=O. It is interesting to remark on the 
sublattice magnetization behaviour, t i l -uF+uA and u2= uF- t iA, in this case: when 



39 14 M A  Murioz and P L Garrido 

0 . 8  
e 

0.7  

0.6  

0.5 

Figure 1. The stationary solutions structure arising from equations (3.7) and (3.8) for the 
rates ( a )  +,(A)=eC*” and ( b )  +,(A)=I-tanh(A/Z). 

T >  T r ) ,  both sublattices have the same magnetization, uI = U*, which presents a 
second-order phase transition at Tp’; when T <  Tiz) one of the sublattices tends to 
saturation at low temperatures, i.e. U, + 1 when T+ 0, and, in compensation, the other 
sublattice loses net magnetization and reaches its minimum value, u2+ 2 p  - 1, when 
T-tO. 

The probability distribution of the system fluctuations, q and 5, around the deter- 
ministic solution, U, which was computed in the last section, can be obtained by solving 
the Fokker-Planck equation (3.3). This equation can be solved explicitly in this model 
by using standard techniques (see [7]), and it can be shown that the general solution 
is a Gaussian distribution. In particular, when T >  TF)(p)  we get for any rate 4 that 
the fluctuations decay exponentially fast towards its stationary Gaussian distribution: 

n,,(q, 6) =--dl -2(1 - p ) K  exp{-(l-2pK)qz-[1-2(1 - p ) K 1 f 2 ] .  
1 

(3.9) 
7r 

When T +  T:”, the Gaussian width goes to infinity and its normalization constant goes 
to zero, as the distribution is singular at the critical point. It is interesting to remark 
that the latter is a consequence of the fact that the critical beha\iour appears at all 
observational scales. For temperatures below Tp) ,  the mean and the standard deviation 
of the distribution depend on the rate we use. 
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T 

T 

Figure 2. Phase diagrams for vF,* versus T for fixed p = O . 8  and for the rates ( a )  $, and 
( 6 )  &.The inset in (b )  shows the behaviour of v,,,,=v,+(-)v,. 

3.2. Effective free energy functional: metastable state analysis 

In general, whether or not a stationary state has a metastable or stable character is 
not a simple question to be answered in the context of a general non-equilibrium 
model system. This is because there is a lack of a well-defined functional potential, 
similar to the functional free energy for equilibrium problems, such that their absolute 
minima correspond to the stable states while the other relative minima are transient 
or metastable states. Some attempts to build a theory have been developed (see [8] 
and references therein) but, in practice, the resulting ones are too complicated to be 
applied. In this section we are going to develop a simple scheme which can be useful 
in order to discriminate between those types of locally stable states. 

Let us define a new dynamic process in which, superimposed on the original 
microscopic dynamic mechanism, there is an external one which is able to fix at any 
time the macroscopic field to a given arbitrary value, U = ( v F ,  ua). This new process is 
described by the master equation 

a 
at x 

~~'(sI 'J;  X)=P~(~KOFS,)~(~-P)~(~~KO*~,) (3.11) 

- Q(s~u; ? ) = E  ( w ( s ~ ~ u ;  X)Q(S"~U; t ) - w ( s l u ;  x ) Q ( s I u ;  t ) )  (3.10) 

where 
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Figure 3. Phase diagrams for vF,* versus p for different temperatures and for the rates 
( a )  4, and ( b )  42. 

and p = 1(-1) when x E .4t(2,. The stationary distribution, &(SI U), for the dynamic 
process defined by equations (3.10) and (3.11) is given by 

where 

and 

(3.13) 

(3.14) 



Microscopic dynamics in non-equilibrium stationary states 3917 

The free energy functional, f ( m l  a), defined in equation (3.14), characterizes the 
fluctuation distribution of the m-field for a given fixed external macroscopic field U. 

In the thermodynamic limit, N- tm,  the most probable states are the minima values 
of the free energy functional, ( 8 f ( m  I u)/Jm),,,. = 0, i.e. 

m*FcA, = - f  tanh(h,(u)) - (+)$ tanh(h,(u)). (3.15) 
Up to this point we have only defined a new simple model distantly related to the one 
we have studied above from the master equation (2.7). Nevertheless, we can build a 
close relationship between both models by assuming that the original model defined 
by the spin-flip dynamics given by equations (2.3), evolves ‘effectively’ by using the 
following scheme: let us assume that the system at some given time t is in a macroscopic 
state characterized by the macroscopic field ut ; due to microscopic fluctuations acting 
on a faster timescale in which U, seems frozen, the system tries to evolve to the most 
probable fluctuation given by the minima of the free energy functional ~ ( u , + ~ , [ u . , )  
where A t  is the natural timescale for the process. Namely, using equation (3.15) we 
can write a set of effective evolution equations for the macroscopic field: 

It is trivial to check that the fixed point for the latter dynamic system, i.e. at+n, = v, = U’, 
is the stationary state that we found by solving directly equations (3.7) and (3.8) in 
section 3.1. 

In particular, it is interesting to study the case with rate $,(h)=e-A’2 at some 
temperature T < Tp) .  In this case we see in figure 4 the dynamic flux described by 
equations (3.16) and (3.17) for different initial conditions. The local dynamic stability 
of both solutions described above, of, and ai:, is clear from the figure. It is interesting 
to remark that the dynamic flows obtained from equations (3.16) and (3.17) are very 
similar to those we got by solving equations (3.7) and (3.8). The main advantage in 
this context comes from the fact that, with our effective dynamic system, we have a 

1,oo 

0.75 

,4 0.50 

0.25 

0.00 
0 2 5  0 5  075 1 

“F 

Figure 4. Dynamic flux arising from iteration of equations (3.19) and (3.20) for the rate 
~ $ ~ , p = 0 . 6 a n d  T<T:*’. 
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function which measures the probability of going from one point to another in the 
phase space: 

(3.18) 

This is essential in order to determine the global stability of a set of locally stable 
stationary states {U,]. 

Once the system has reached one of these stationary states, say U,, let us assume 
that the most probable fluctuation process is the following: the system evolves to any 
other state, say m, with probability P(oi+ m) and from there it evolves to the nearest 
attractor, say U,, by means of the deterministic equations (3.16) and (3.17). A more 
general formulation of the fluctuation process can be given by means of path integrals, 
but this is beyond the scope of this paper. In these terms, we can say that a given 
stationary state ui is metastable with respect to another uj whenever the following 
condition holds: 

dm P( U, + m) (3.19) 

where D(v)  is the set of initial states evolving by means of the deterministic equations 
(3.16) and (3.17) to the stationary state U. When N+w,  and because the functional 
f (m I U,) is in our case a monotonous function in m for any fixed U,, the equation (3.19) 
can be simplified by using the steepest descent method to 

I dm P(uj + m )  < I mED(".l meDlo,) 

exp[-N(f(xj I uj)  - f (uj  I uj))l <exp[-N(f(xjI uj) - f ( ~  I00)l (3.20) 
or, equivalently, 

f(*l - f ( 4  19) - f ( s  J U , )  +f(s I s)>O (3.21) 

where xi and xj are two points which minimizef(m I U,) andf(m1 uj)  respectively along 
the separatrix between both domains of attraction, D(uJ and D(uj).  

Figure 5. Behaviour of the free energy functional g(u) E g(v,,  0,) = g( (v ,  -t v,) /Z,  
(U, - 4/2), defined in equation (3.17) for the same case as in figure 4. 
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It is easy to show that in our mean field model the contribution of the first two 
terms in equation (3.21) may be neglected. Therefore, the condition given by equation 
(3.21) is reduced to g(uJ =f( U, [ U?) > g(uj). In figure 5 we show the behaviour of the 
function g(ust). In particular, we find that g(u:$') = -2 log(Z)+log(l -U;,*); from 
figure 2 ( a )  we see that uF> U*, implying that g(uit) <g(u::). Namely, we confirm our 
previous heuristic argument that U:, = (up, 0) is the 'true' stationary state, U:: = (0, uA) 
being a metastable one. 

4. Conclusions 

We have analysed a relatively simple mean field model system for which it is possible 
to study in detail the dependence of the non-equilibrium stationary properties on the 
functional form of the microscopic dynamic rates. This dependence is studied at 
deterministic and fluctuating levels of description. It is checked that the system phase 
diagram changes not only quantitatively but also qualitatively from one rate to another. 
Finally, it is possible to build an effective dynamic mechanism which defines in a 
natural form a local free energy functional that allows us to distinguish between the 
stable and the metastable or transient states that appear in certain cases. 
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